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Abstract

Purpose – This paper seeks to analyze transient convection-diffusion by employing the generalized
integral transform technique (GITT) combined with an arbitrary transient filtering solution, aimed at
enhancing the convergence behavior of the associated eigenfunction expansions. The idea is to
consider analytical approximations of the original problem as filtering solutions, defined within
specific ranges of the time variable, which act diminishing the importance of the source terms in the
original formulation and yielding a filtered problem for which the integral transformation procedure
results in faster converging eigenfunction expansions. An analytical local instantaneous filtering is
then more closely considered to offer a hybrid numerical-analytical solution scheme for linear or
nonlinear convection-diffusion problems.

Design/methodology/approach – The approach is illustrated for a test-case related to transient
laminar convection within a parallel-plates channel with axial diffusion effects.

Findings – The developing thermal problem is solved for the fully developed flow situation and a
step change in inlet temperature. An analysis is performed on the variation of Peclet number, so as to
investigate the importance of the axial heat or mass diffusion on convergence rates.

Originality/value – This paper succeeds in analyzing transient convection-diffusion via GITT,
combined with an arbitrary transient filtering solution, aimed at enhancing the convergence behaviour
of the associated eigenfunction expansions.
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Nomenclature
b ¼ half width of parallel plates

channel (equation (12))
d(x) ¼ linear dissipation coefficient

(equation (1a))
f(x) ¼ initial condition (equation (1b))
k(x) ¼ diffusion operator coefficient

(equation (1a))
Ni ¼ normalization integral of the

eigenvalue problem (equation (8))
P(x, t, T) ¼ nonlinear source term appearing

in equation (1a)
T(x, t) ¼ potential
t ¼ time variable
u0 ¼ parameter appearing in equation

(12)
u( y) ¼ dimensionless velocity field

(equation (12))

x, y ¼ dimensionless space variables
(problem (13a)-(13g))

x ¼ position vector
w(x) ¼ transient operator coefficient

(equation (1a))

Greek symbols
a, b ¼ coefficients for the boundary

condition (1c)
1 ¼ error estimator (equation (11))
mi ¼ eigenvalues of problem (5a) and

(5b)
ci ¼ eigenfunctions of problem (5a)

and (5b)
fðx; t;TÞ ¼ nonlinear source term appearing

in equation (1c)

Introduction
Along the last few decades, various purely discrete and semi-analytical approaches
have been developed and applied to the approximate solution of diffusion and
convection-diffusion problems. In parallel, a number of error control schemes have
been proposed and tested to assess and/or to improve the accuracy of such
approximate methodologies. While discrete numerical methods have been proved
effective and flexible in handling different classes of heat and fluid flow problems, the
automatic control and estimation of errors within the associated algorithms, in
particular for multidimensional applications, still pose some numerical analysis
difficulties, which are inherent to their discrete nature. In this context, a number of
hybrid numerical-analytical methodologies have appeared in the open literature, that,
to within different degrees of success, attempt to match the classical analytical ideas
with the present knowledge basis on numerical analysis, in the search for more
accurate, robust and economical options to the now well-established discrete solution
methods.

Within the last two decades, the classical integral transform method was
progressively generalized under a hybrid numerical-analytical concept (Cotta, 1993,
1994a, 1994b, 1998; Serfaty and Cotta, 1992; Cotta and Mikhailov, 1997). This approach
now offers user-controlled accuracy and efficient computational performance for a
wide variety of non-transformable problems, including the most usual nonlinear
formulations in heat and fluid flow applications. Besides, being an alternative
computational method in itself, this hybrid approach is particularly well suited for
benchmarking purposes. In light of its automatic error-control feature, it retains the
same characteristics of a purely analytical solution. In addition to the straightforward
error control and estimation, an outstanding aspect of this method is the direct
extension to multidimensional situations, with only a moderate increase in
computational effort. Again, the hybrid nature is responsible for this behavior, since
the analytical part in the solution procedure is employed over all but one independent
variable, and the numerical task is always reduced to the integration of an ordinary
differential system over this single independent variable.
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This generalized integral transform technique (GITT) is now a well-established
computational approach (Cotta, 1993, 1994a, 1994b, 1998; Serfaty and Cotta, 1992; Cotta
and Mikhailov, 1997) and convergence enhancement strategies were proposed (Cotta
and Mikhailov, 1997; Scofano Neto et al., 1990; Leiroz and Cotta, 1990; Almeida and
Cotta, 1996), aimed at reducing computational costs by offering more efficient
eigenfunction expansions with lower truncation orders, for the same requested global
accuracy. More recently, a local-instantaneous filtering strategy was proposed, Macedo
et al. (1999), based on analytical filtering solutions, which present both space and time
dependence, within ranges of the time numerical integration path. For instance,
representative linearized or just simplified versions of the original problem in a certain
time interval, after being exactly solved through the classical integral transform
approach, more effectively partially filter the original problem source terms, which are
responsible for deviating the convergence behavior from the spectral exponential
pattern. Then, the filter can be automatically redefined for the next time variable range,
by prescribing a desirable maximum value for the system truncation order, while still
satisfying the user requested global accuracy target.

The previous experience with these different filtering strategies is now here recalled
to propose a hybrid numerical-analytical integral transform procedure, which adopts a
local instantaneous filter (LIF) for a typical transient convection-diffusion partial
differential system. This work is aimed at complementing the analysis in Macedo et al.
(1999) by introducing convective terms and examining the behavior of the proposed
filtering for parabolic-hyperbolic formulations. An application modeled by a transient
convection-diffusion formulation is then considered for illustration of these ideas, and
the performance of the LIF scheme is critically examined. The chosen test-case is
related to transient laminar convection within a parallel-plates channel. The
developing thermal problem is solved for fully developed flow situation, considering
axial diffusion in the energy equation, and the numerical challenging boundary
condition of a step change in inlet temperature.

Solution methodology
As an illustration of the formal integral transform procedure, a transient
convection-diffusion problem of a potential T (velocity, temperature or
concentration) is considered. The problem is defined in the region V with boundary
surface S and including nonlinear effects in the source terms as follows:

wðxÞ
›Tðx; tÞ

›t
¼ 7 · kðxÞ7T 2 dðxÞT þ Pðx; t;TÞ; in x [ V ; t . 0 ð1aÞ

with initial and boundary conditions:

Tðx; 0Þ ¼ f ðxÞ; x [ V ð1bÞ

aðxÞT þ bðxÞkðxÞ
›T

›n
¼ fðx; t;TÞ; x [ S; t . 0 ð1cÞ

where a and b are the boundary condition coefficients and n is the outward drawn
normal vector to surface S.
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The equation and boundary source terms, P and f, may include nonlinear operators
from the original problem formulation, such as a nonlinear convection term, and
therefore, the linear coefficients in system (1a), (1b) and (1c) can be interpreted as
characteristic ones. Then, equations (1a), (1b) and (1c) can be viewed as a much more
general formulation than apparent at first sight.

The first step in application of the GITT is the proposition of a filtering solution, which
at least reduces the effects on convergence rates due to the equation and boundary source
terms. The most frequently employed procedure is the adoption of a single analytical filter
(Cotta, 1993; Cotta and Mikhailov, 1997), which in general reproduces the steady-state
solution of the original problem or, at least a quasi-steady behavior upon linearization. The
single filter strategy cannot offer an effective and uniform filtering over the whole time
domain, and multiple successive filters may be required for further improvement of the
final convergence rates. Since, the single filter is derived from a simplified problem
formulation, in general linearizing or omiting terms in the original formulation, it will not
follow the desired solution pattern for all the space and time domains ranges, which may
result in quite variable magnitudes of the filtered source terms. More recently, a
local-instantaneous filtering strategy was proposed, Macedo et al. (1999), which includes
both space and time dependence, extracted from linearized and/or simplified versions of
the original partial differential system. The scheme automatically updates the filter along
the time integration march, and offers improved convergence rates enhancement, with
respect to the single filtering strategy, acting on diminishing the importance of the source
terms along the entire solution domain, in both time and space.

We then proceed with the derivation of an integral transform procedure combined
with a general filtering obtained from any previously obtained approximate solution of
the originally proposed partial differential system. This approximate solution is here
denoted by TFðx; tÞ and is considered a filtering solution in the form:

Tðx; tÞ ¼ T*ðx; tÞ þ TFðx; tÞ ð2Þ

where TFðx; tÞ has an analytical representation originated from the approximate
solution methodology (or from discrete points interpolation), and may be defined in a
specified range of the time variable only, ts21 , t , ts.

The resulting formulation for the filtered potential, T *, then becomes:

wðxÞ
›T*ðx; tÞ

›t
¼ 7 · kðxÞ7T* 2 dðxÞT* þ P*ðx; t;T*Þ; x [ V ; t . 0 ð3aÞ

with initial and boundary conditions:

T*ðx; 0Þ ¼ f *ðxÞ; x [ V ð3bÞ

aðxÞT* þ bðxÞkðxÞ
›T*

›n
¼ f*ðx; t;T*Þ; x [ S ð3cÞ

where the filtered source terms and initial condition are given by:

P*ðx; t;T*Þ ¼ Pðx; t;TÞ2 wðxÞ
›TFðx; tÞ

›t
2 7 · kðxÞ7TF þ dðxÞTF

� �
ð4aÞ
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f*ðx; t;T*Þ ¼ fðx; t;TÞ2 aðxÞTF þ bðxÞkðxÞ
›TF

›n

� �
ð4bÞ

f *ðxÞ ¼ f ðxÞ2 TFðx; 0Þ ð4cÞ

In case, the approximate solution identically satisfies the initial and boundary
conditions, such as in the situation of prescribed boundary potentials, the boundary
source term and the initial distribution become zero, and only the filtered equation
source term remains as defined in equation (4a). It is already evident that the
time-variable filter strategy can possibly offer a more effective and uniform filtering
over the whole time domain, and yield a fast converging eigenfunction expansion for
the original problem. At this point, it suffices to proceed with the general filter strategy,
and obtain the integral transform solution for the filtered potential, T*. Following the
formalism in the GITT (Cotta, 1993, 1994a, 1994b, 1998; Serfaty and Cotta, 1992; Cotta
and Mikhailov, 1997), the appropriate eigenvalue problem is chosen as:

7 · kðxÞ7ciðxÞ þ m2
i wðxÞ2 dðxÞ

� �
ciðxÞ ¼ 0; x [ V ð5aÞ

with boundary conditions:

aðxÞciðxÞ þ bðxÞkðxÞ
›ci

›n
¼ 0; x [ S ð5bÞ

and the solution for the associated eigenfunctions, ciðxÞ, and eigenvalues, mi , is here
assumed to be known. Problems (5a) and (5b) allow definition of the following integral
transform pair:

�TiðtÞ ¼

Z
v

wðxÞ ~ciðxÞT*ðx; tÞdv; transform ð6aÞ

T*ðx; tÞ ¼
X1
i¼1

~ciðxÞ �TiðtÞ; inverse ð6bÞ

where the normalized eigenfunctions are given by:

~ciðxÞ ¼
ciðxÞ

N
1=2
i

ð7Þ

and the normalization integrals:

Ni ¼

Z
v

wðxÞc2
i ðxÞdv ð8Þ

After application of the integral transformation concept, the resulting ODE system for
the transformed potentials, �TiðtÞ, is written as:

d �TiðtÞ

dt
þ m2

i
�TiðtÞ ¼ �giðt; �TjÞ; t . 0; i; j ¼ 1; 2. . . ð9aÞ

with initial conditions:
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�Tið0Þ ¼ �fi ð9bÞ

where

�giðt; �TjÞ ¼

Z
v

~ciðxÞP*ðx; t;T*Þdvþ

Z
S

f*ðx; t;T*Þ
~ciðxÞ2 kðxÞ ›

~ci

›n

aðxÞ þ bðxÞ

 !
ds ð9cÞ

�fi ¼

Z
v

wðxÞ ~ciðxÞf *ðxÞdv ð9dÞ

System (9a)-(9d) is then numerically solved through well-established initial value
problem solvers, readily available in scientific subroutines libraries such as the IMSL
Library (1989), or directly as built-in function in mixed symbolic-numerical platforms,
such as the Mathematica system (Wolfram, 1996), which implement automatic relative
error control schemes.

The desired final solution is then reconstructed by:

Tðx; tÞ ¼
XN
i¼1

~ciðxÞ �TiðtÞ þ TFðx; tÞ ð10Þ

The truncation order N may be adaptively chosen along the numerical integration
march, as described in Cotta (1993), so as to always work with truncation orders that
are just enough to satisfy the user prescribed accuracy requirements, at selected
positions (x) and time values (t).

A relative error estimator for the available hybrid solution may also be provided, at
practically no additional cost, for a certain truncation order N in the eigenfunction
expansion and evaluated at those points of interest, for instance by taking the last three
terms in the expansion, in the form:

1ðx; tÞ ¼

XN
i¼N22

~ciðxÞ �TiðtÞ

Tðx; tÞ
ð11Þ

An odd number of terms is in general preferred in the evaluation of the numerator of
equation (11), so as to avoid eventual error cancellation due to oscillatory convergence
patterns, with the associated false convergence indication. One should keep in mind
that the above testing procedure, as an error estimator, relies on the approximate
solution itself, and should be analyzed with care for very low truncation orders and/or
slowly converging series. It is worth mentioning that the time-variable filtering
strategy indirectly introduces a quite desirable modulation effect on the transformed
ODE system. As the filter closely follows the desired solution functional behavior
along the time domain, the differences in time constants among the filtered potentials
are then reduced, i.e. the original transformed potentials obtained without filtering
would certainly result in more widely spaced behaviors in the time variable among the
solution components. While the single steady filter solution produces, in general, stiff
ODE systems for increasing truncation orders, requiring special initial value problem
solvers, the transient filtering shall yield, in principle, less stiff systems, which are
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readily solvable by standard explicit schemes at reduced computational cost. Of
course, the degree of stiffness reduction offered by the employed LIF will depend on
how closely the filter can follow the time variable behavior of the original function that
is being pre-estimated by this strategy.

Application
The solution scheme here presented is now illustrated through consideration of
transient laminar convection within a parallel-plates channel, according to the
geometry and coordinates system shown in Figure 1. This hybrid numerical-analytical
approach, especially useful in the development of benchmark solutions, is here
analyzed in handling a test case in transient convection (Cotta et al., 1986; Cotta and
Gerk, 1994; Kakaç et al., 1989; Cotta and Özisik, 1986; Kim et al., 1990) within a
considerable range of diffusion and convection relative influences. The solution
strategy by analytical filtering with an approximate solution defined in certain time
ranges, previously called a LIF (Macedo et al., 1999), is undertaken to allow for a critical
comparison of its relative efficiency with respect to previous filtering strategies
(Gondim, 1997; Gondim and Cotta, 2000a, b).

The developing thermal problem is solved for fully developed flow situation,
considering axial diffusion in the energy equation (Cotta et al., 1986; Cotta and Gerk,
1994; Kakaç et al., 1989), with step change of inlet temperature. An analysis is
performed on the variation of Peclet number, so as to investigate the importance of the
axial heat diffusion.

Considering the following dimensionless variables:

x ¼
x*=b

Re Pr
¼

x*

b Pe
; y ¼

y*

b
; u ¼

u*

16uav
; t ¼

at*

b 2
;L ¼

L*=b

Re Pr
;

T ¼
T* 2 Tw

Te 2 Tw
;Re ¼

uav4b

n
;Pr ¼

n

a
;Pe ¼ Re Pr ¼

uav4b

a
ð12Þ

the problem under concern is formulated in dimensionless form as:

›Tðx; y; tÞ

›t
þ uð yÞ

›Tðx; y; tÞ

›x
¼

›2Tðx; y; tÞ

›y 2
þ

1

Pe2

›2Tðx; y; tÞ

›x 2

0 , y , 1; x . 0; t . 0

ð13aÞ

Tðx; y; 0Þ ¼ 0; x $ 0; 0 # y # 1 ð13bÞ

Figure 1.
Coordinates system and

problem geometry for
transient convection

between a parallel-plates
channel with step change

in inlet temperature

y*

u*(y*),Te

Tw

b

x*

x*= L*

0
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Tð0; y; tÞ ¼ 1; t . 0; 0 # y # 1 ð13cÞ

›Tðx; 0; tÞ

›y
¼ 0; t . 0; x $ 0 ð13dÞ

Tðx; 1; tÞ ¼ 0; t . 0; x $ 0 ð13eÞ

TðL; y; tÞ ¼ 0; t . 0; 0 # y # 1 ð13fÞ

with

uð yÞ ¼
3

32
ð1 2 y 2Þ ð13gÞ

This problem has been previously solved by employing a filtering solution for the
steady-state and pure diffusion problem (Gondim, 1997; Gondim and Cotta, 2000b), and
also validated via the reproduction of the infinite Peclet number results available in the
literature (boundary layer formulation) (Cotta et al., 1986; Cotta and Gerk, 1994). An
approximate transient analytical solution has also been obtained for the same problem,
through a combination of the methods GITT/Laplace transform (Cotta and Özisik, 1986;
Kim et al., 1990), which was then critically compared to the fully converged solution
(Gondim, 1997; Gondim and Cotta, 2000b). This approximate analytical solution was
also employed as a transient convective-diffusive filter in the complete solution of the
original problem, with very good results, but with a marked increase in computational
cost in comparison with the first alternative of a simple steady-state filter (Gondim, 1997;
Gondim and Cotta, 2000a).

Aimed at reducing the computational cost, a local-instantaneous filtering strategy
(Macedo et al., 1999) is here applied to the original problem. This LIF, for each selected
time interval, updates the information on the source terms in the approximate
formulation of the filtering solution, so as to optimize the convergence rates along the
time-integration process. Convergence is analyzed by increasing the number of terms
in the related series and/or by increasing the number of intervals in the filter updating.
Each time interval for the filter updating, tS21 , t , tS , has the following
interpretation (Macedo et al., 1999):

S-1 TS

tS

TS-1 S+1

tS+1tS-2 tS-1  

S 

where S is the observed time interval, T S21 is the temperature at the beginning of the
process (refers to the previous interval) and tS21 is the initial time. The desired
potential Tðx; y; tÞ is then separated as:
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T sðx; y; tÞ ¼ T*sðx; y; tÞ þ Ts
f ðx; y; tÞ; 0 # y # 1; x $ 0; ts21 # t # ts ð14Þ

where Ts
f ðx; y; tÞ is the LIF and T

*sðx; y; tÞ is the filtered potential to be determined.
The filter equation is chosen, from possible simplifications of the original problem, as:

›Ts
f ðx; y; tÞ

›t
¼

›2Ts
f ðx; y; tÞ

›y 2
þ

1

Pe 2

›2Ts
f ðx; y; tÞ

›x 2
þ g s21ðx; yÞ;

0 # y # 1; x $ 0; ts21 # t # ts

ð15aÞ

where the simplified source term becomes:

g s21ðx; yÞ ¼ 2uð yÞ
›T s21ðx; y; ts21Þ

›x
ð15bÞ

and the initial condition is updated accordingly:

Ts
f ðx; y; ts21Þ ¼ T s21ðx; y; ts21Þ;

while for t ¼ 0; T1
f ðx; y; 0Þ ¼ 0; x $ 0; 0 # y # 1

ð15cÞ

A criterion of maximum relative deviation between the filter and the obtained solution
may be employed for an automatic triggering of the filter updating, or more simply, an
initial conservative estimate for the number of time intervals between updates may be
obtained from the first time interval solution behavior.

Results and discussion
The computer code was prepared in Fortran (Microsoft Powerstation) and executed on
a PC compatible microcomputer. The initial value problem for the transformed
potentials was solved employing subroutine DIVPAG from the IMSL Library (1989).
This subroutine can handle both non-stiff (Adams-Moulton) and stiff (Gear) systems,
and their combined use is an interesting analysis tool in observing the ODE system
degree of stiffness. The local relative error control was here prescribed from 1024 to
1028, for checking purposes. The dimensionless times of interest selected are t ¼ 0.005,
0.01, 0.03 e 0.05, where the first one is employed to observe the convergence behavior in
the very low time limit, not in general recommended for eigenfunction expansion
approaches, and the other three are selected to allow for comparisons with previously
published results, as the Peclet number is varied. The selected Peclet number values
are Pe ¼ 1, 10 and 100, and a careful convergence analysis was performed for each of
these situations, adopting a sufficiently large channel length in each case to warrant
the application of the boundary condition at x ¼ L.

Figure 2(a)-(c) shows the behavior of the dimensionless bulk temperature or
concentration along the channel length, for the four dimensionless time values, and the
different Peclet numbers in each case. Three sets of curves are shown in each graph,
which correspond to the present GITT solution with a local instantaneous filter (GITT
with LIF), the behavior of the filter itself (LIF only) as an approximate solution, and the
previously obtained results for the integral transform approach with a single
steady-state filter (Gondim, 1997; Gondim and Cotta, 2000b) for covalidation. One may
observe the good agreement with the previous simpler GITT solution (Gondim and
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Cotta, 2000b) with the more elaborate one here advanced. However, for the larger value
of Pe ¼ 100 it becomes evident that the GITT solution with the steady filter is yet not
fully converged just after the thermal front region. In addition, the LIF solution itself
may be considered as a reasonable approximation for the lower values of Pe, when
diffusion is more important in the transport phenomena. The analysis also shows that
one should not neglect, a priori, the axial diffusion in certain problems without a
careful investigation that accounts for the effects of the boundary and inlet conditions
employed in the formulation.

The convergence behavior of the present solution is illustrated in tabular form,
according to Tables I and II for the dimensionless bulk potential, with Pe ¼ 10 and 100,
respectively. For the lower Peclet number, truncation orders around N ¼ 180 were
sufficient to warrant at least four significant digits of convergence, within the wide
range of dimensionless times and axial positions here considered. For Pe ¼ 100, larger
truncation orders (up to N ¼ 240) were required to reach convergence in general to the
fourth significant digit of the bulk potential, while in the lower value of the time
variable only three digits have stabilized at this system size. The consideration of a
larger number of time steps in this region of lower time values can be employed, when

Figure 2.
(a) Comparison of
solutions for the
dimensionless bulk
potential along the
channel with Pe ¼ 1
(t ¼ 0.005, 0.01, 0.03 and
0.05); (b) comparison of
solutions for the
dimensionless bulk
potential along the
channel with Pe ¼ 10
(t ¼ 0.005, 0.01, 0.03 and
0.05); (c) comparison of
solutions for the
dimensionless bulk
potential along the
channel with Pe ¼ 100
(t ¼ 0.005, 0.01, 0.03 and
0.05)
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Truncation order
Time t X 100 120 140 160 180

0.005 0.0009583 0.92531 0.92511 0.92499 0.92499 0.92500
0.0047917 0.64017 0.63940 0.63891 0.63891 0.63894
0.0086250 0.39908 0.39842 0.39801 0.39797 0.39793
0.0124583 0.22052 0.22052 0.22050 0.22042 0.22033
0.0162917 0.10631 0.10689 0.10716 0.10709 0.10703

0.010 0.0016667 0.90807 0.90816 0.90831 0.90839 0.90845
0.0083333 0.56635 0.56648 0.56667 0.56673 0.56677
0.0937500 0.30063 0.30043 0.30003 0.29985 0.29972
0.0216667 0.13206 0.13193 0.13188 0.13194 0.13202
0.0283333 0.04742 0.04761 0.04793 0.04801 0.04801

0.030 0.0022917 0.92666 0.92673 0.92684 0.92690 0.92694
0.0114583 0.65050 0.65051 0.65047 0.65043 0.65040
0.0206250 0.41418 0.41409 0.41401 0.41402 0.41405
0.0297917 0.23727 0.23737 0.23749 0.23749 0.23746
0.0389583 0.12149 0.12139 0.12120 0.12117 0.12118

0.050 0.0033333 0.91609 0.91616 0.91628 0.91633 0.91637
0.0166667 0.60716 0.60707 0.60693 0.60687 0.60684
0.0300000 0.35680 0.35688 0.35696 0.35696 0.35694
0.0433333 0.18348 0.18340 0.18338 0.18343 0.18347
0.0566667 0.08148 0.08152 0.08144 0.08138 0.08137

Table I.
Convergence behavior of

dimensionless bulk
potential, Tavðx; tÞ, in

various positions,x, along
the channel (LIF with

three solution intervals)
Pe ¼ 10, L ¼ 0.2

Truncation order
Time t X 120 160 200 220 240

0.005 0.0001667 0.90055 0.90302 0.90467 0.90527 0.90563
0.0008333 0.52282 0.52548 0.52596 0.52600 0.52586
0.0015000 0.21952 0.21306 0.20938 0.20859 0.20815
0.0021667 0.04682 0.04665 0.04888 0.04971 0.05012
0.0025000 0.00992 0.01426 0.01644 0.01653 0.01635

0.010 0.0002083 0.92815 0.93004 0.93110 0.93151 0.93172
0.0010417 0.62965 0.63029 0.62981 0.62953 0.62933
0.0018750 0.32992 0.32731 0.32700 0.32726 0.32738
0.0027083 0.12379 0.12578 0.12578 0.12544 0.12517
0.0035417 0.03033 0.02836 0.02764 0.02790 0.02809

0.030 0.0003750 0.95145 0.95248 0.95288 0.95313 0.95315
0.0018750 0.71725 0.71677 0.71683 0.71699 0.71700
0.0033750 0.43536 0.43505 0.43473 0.43475 0.43475
0.0048750 0.19869 0.19918 0.19884 0.19873 0.19871
0.0063750 0.06307 0.06289 0.06285 0.06267 0.06265

0.050 0.0004583 0.96167 0.96240 0.96257 0.96276 0.96274
0.0022917 0.78256 0.78289 0.78306 0.78320 0.78319
0.0041250 0.54913 0.54900 0.54914 0.54920 0.54919
0.0059583 0.31208 0.31176 0.31187 0.31183 0.31183
0.0077917 0.13578 0.13562 0.13573 0.13561 0.13561

Table II.
Convergence behavior of

dimensionless bulk
potential, Tavðx; tÞ, in

various positions,x, along
the channel (LIF with

three solution intervals)
Pe ¼ 100;L ¼ 0:02
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required, to enhance the filtering effect provided by the LIF and thus reduce the system
truncation orders.

Finally, among the different possible filtering strategies studied for this class of
problems, it can be concluded that the proposition of adaptive transient filtering, such
as the LIF (Macedo et al., 1999), is the most adequate alternative, due to the analytical
and explicit tracking of the transient thermal front, where the effects of the
non-transformable longitudinal convection term become relevant to the reduction of
convergence rates.

Conclusion
In the present work, transient laminar convection within a parallel-plates channel is
studied through the use of the GITT. The developing thermal problem is solved for
fully developed flow situation, considering axial diffusion in the energy equation. An
analysis is performed on the variation of Peclet number, so as to investigate the
importance of the axial heat or mass diffusion. Aimed at reducing computational cost,
a local-instantaneous filtering strategy is applied to the original problem, with
excellent results, and convergence is analyzed by increasing the number of terms in the
related series and/or by increasing the number of intervals in the filter updating. The
developed code employs a general transient filtering solution originated from any
approximate analytical solution of the original problem, and allows the reproduction of
results available in the literature from different filtering strategies.

The analysis shows that one should not neglect a priori the axial diffusion in certain
problems without a careful investigation that accounts for the boundary and inlet
conditions employed in the formulation. It is also demonstrated that the use of
local-instantaneous filters and dynamic reordering of the expansions is of crucial
importance in the optimization of GITT solutions.
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